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Binding or potential energy curves have been calculated for the ground-state diatomics H2
+, He2

+, LiH+, H2,
N2, and C2, for the transition state H3, and for the triplet first excited state of H2 using the nonempirical
density functionals from the first three rungs of a ladder of approximations: the local spin density (LSD)
approximation, the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA), and the
Tao-Perdew-Staroverov-Scuseria (TPSS) meta GGA. Good binding energy curves in agreement with coupled
cluster or configuration interaction calculations are found from the PBE GGA and especially from the TPSS
meta GGA. Expected exceptions are the symmetric radicals H2

+ and He2+, where the functionals suffer from
self-interaction error, and the exotically bonded C2. Although the energy barrier for the reaction H2 + H f
H + H2 is better in PBE than in TPSS, the transition state H3 is a more properly positioned and curved saddle
point of the energy surface in TPSS. The triplet first excited state of H2 obeys the Aufbau principle and thus
is one of the exceptional excited states that are computable in principle from the ground-state functional. The
PBE GGA and TPSS meta GGA are useful not only for chemical applications but also for the construction
of higher-rung nonempirical functionals that can further improve the binding energy curves.

1. Introduction and Conclusions

Kohn-Sham density functional theory1,2 is now the citation
leader in both physics3 and chemistry4 because it predicts
usefully accurate total energies, electron densities, and nuclear
frameworks at the computational cost of a self-consistent
noninteracting electron problem. For the ground state of
nonrelativistic electrons and massive nuclei, these predictions
would be exact if the exact spin density functional for the
exchange correlation energyExc[nv, nV] were known.

The earliest and simplest approximation1 to Exc[nv, nV] was
the local spin density (LSD) approximation, parametrized, for
example, as SVWN55 or PWL:6

wherenv(rb) andnV(rb) are the electron spin densities at position
rb, constructed from the occupied Kohn-Sham orbitals:

This nonempirical approximation, which becomes exact in the
limit of uniform density, is still widely used in solid-state
physics.

Considerable improvement in accuracy, especially for mol-
ecules, is achieved through the inhomogeneity correction of the
generalized gradient approximation7 (GGA):

Still further improvement is achieved by the meta GGA8

where

is the noninteracting kinetic energy density or by the hybrid
functionals9 that mix a fraction of exact exchange with GGA
or meta GGA exchange.

The functionals can be constructed either empirically by
fitting to selected properties of atoms and molecules or
nonempirically through the satisfaction of known exact con-
straints onExc[nv, nV]. Empirical GGAs10,11and hybrids12,13are
popular in chemistry and have been widely used. There are,
however, several advantages14 to nonempirical functionals: (1)
They are as universal as the constraints they respect, working
accurately for solid metals and metal surfaces as well as for
molecules, whereas the empirical functionals typically do not.15

(2) They test and deepen the understanding of exchange and
correlation. (3) Each rung of the nonempirical ladder of
functionals satisfies the exact constraints appropriate to its own
set of local ingredients (nv(rb), nV(rb), ...), whereas the empirical
functionals typically satisfy only a few exact constraints. (4)
Each rung of the nonempirical ladder builds upon and incor-
porates the lower rungs. Thus, the Perdew-Burke-Ernzerhof
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(PBE) GGA7 on the second rung of the ladder incorporates the
LSD of the first rung. Similarly, the new Tao-Perdew-
Staroverov-Scuseria (TPSS) meta GGA8 on the third rung
incorporates PBE and may itself be incorporated into higher
rungs of the nonempirical ladder.

Although TPSS meta GGA tends to produce more accurate
total energies,16 bond lengths, and vibrational frequencies17 than
PBE GGA, the most striking practical improvements brought
about by TPSS are in the atomization or dissociation energies
of molecules17,18(where TPSS is in some way competitive with
the popular empirical functional B3LYP10-13) and in the surface
energies of metals.19

Extensive tests of the nonempirical functionals are needed
not only to calibrate them for users but also to determine whether
they are robust enough to serve as foundations for future
nonempirical functionals on higher rungs. For a given property
of a given kind of system, accuracy should increase or at least
not decrease up the ladder. A previous meta GGA, the PKZB,20

was found21 to fail for the description of hydrogen bonds and
had to be replaced by TPSS.8

There are now many confirming tests7,16-19,22-24 of PBE GGA
and TPSS meta GGA, but there have been few if any such tests
for molecular binding energy curves. For convenience, we shall
define the binding or potential energy curve as the total
nonrelativistic fixed-nucleus energyE as a function of bond
length R; here, we shall not subtract theR f ∞ limit as is
commonly done. Note that this curve defines a potential energy
for the nuclear motion in the adiabatic approximation. Calcula-
tions of bond length, dissociation energy, and vibrational
frequency test the quality of the energy at and near the
equilibrium geometry but do not necessarily test its quality under
finite expansions and compressions of the bond lengths (as
demonstrated by several examples below). We provide such tests
here for covalent bonds in closed-shell and radical molecules.
Besides the nonempirical functionals LSD, PBE GGA, and
TPSS meta GGA, we have made some tests of their one-
parameter hybrids PBEh9 (25% exact exchange) and TPSSh17

(10% exact exchange) and of the nonempirical Hartree-Fock
(HF) or exact-exchange-only method. Because LSD and HF
typically display severe over- and underbinding, respectively,
we will focus mainly on the more realistic PBE GGA and TPSS
meta GGA. A future study will address the van der Waals bonds
of the rare-gas and alkaline-earth diatomics.

The main conclusions of the present work may be sum-
marized as follows:

(a) The binding energy curves of the nonempirical PBE GGA
and TPSS meta GGA are qualitatively similar to one another
and to those of empirical GGAs and hybrids. These curves are
qualitatively correct, except for the symmetric radicals H2

+ and
He2

+ under expansion.25-30 These symmetric radicals dissociate
to fractionally charged fragments (e.g., H+1/2 and H+1/2) for
which LSD, GGA, meta GGA, and hybrid all make substantial
self-interaction errors signaled by a spurious maximum in the
binding energy curve. But the unsymmetric radical LiH+, which
dissociates to Li+ and H, is properly described. (Approximate
functionals do not always dissociate molecules to correctly
charged atoms, but the spin density functional description of
LiH+ is nonproblematic. We hope to search for problematic
cases in future work.)

(b) For these density functionals, as for single-reference wave
function methods such as the coupled cluster method, spin
symmetry breaking32-34 is often needed to make a realistic
binding energy curve, especially at expanded bond lengths. The

spin symmetry breaking in stretched H2 and N2 is rather similar
in PBE GGA and TPSS meta GGA.

(c) For C2, where the singlet spin symmetry is broken even
at the equilibrium bond length,35,36 the detailed shape of the
true ground-state binding energy curve that arises from many
low-lying excited states36,37 is not well described by GGA or
meta GGA.

(d) The equilibrium bond length and equilibrium total energy
of a molecule tend to be described very well by the TPSS meta
GGA, in some cases, better than by simple implementations of
the coupled cluster or full configuration interaction methods.

(e) The energy barrier for the reaction H2 + H f H + H2 is
too low in PBE GGA and even lower in TPSS meta GGA,
although for a large set of molecules, the errors in the energy
barriers are about the same for both functionals.38,39Neverthe-
less, the energy surface near the transition state H3 is a properly
positioned and properly curved saddle point in TPSS meta GGA,
whereas it is improperly positioned and improperly curved in
PBE GGA (as in some other GGAs40), and it is a global
minimum in LSD. The good TPSS description of the H3 energy
surface near its saddle point is consistent with the good TPSS
description of molecular vibrational frequencies.17

(f) The binding energy curve of the essentially repulsive triplet
(fully spin-polarized) first excited state41 of H2 is reproduced
accurately by PBE GGA and especially by TPSS meta GGA.
Even the very weak van der Waals minimum is found. Because
its orbital energies obey the Aufbau principle, this is one of the
exceptional excited states that are computable from the ground-
state density functional according to the spin density functional
generalization of ref 42.

On the basis of these and other studies, we conclude that
PBE GGA and TPSS meta GGA are not only useful functionals
for chemical applications but also are firm and secure rungs on
which to construct higher-rung nonempirical functionals. The
fourth (and still incomplete) rung is the hyper GGA, which
should employ full (100%) exact exchange and a compatible,
fully nonlocal, self-interaction-free correlation functional. In the
hyper GGA, the binding curve of H2+ should be exact, and that
of He2

+ should be improved. The energy barriers of H3 and
other transition states should also be raised, but the binding curve
for C2 might remain a challenge.

2. Methods of Calculation

We performed most of our calculations with triple-ú-quality
basis sets, which have proved reliable for density functional
computations, using the Gaussian 03 program package43 with
the Suse Linux 9.0 operating system. Basis set effects were also
studied for several compounds from the simplest 6-31G(d) basis
set up to the largest aug-cc-pVQZ. These basis sets are built
into Gaussian 03. We observed some SCF convergence prob-
lems with the Gaussian 03 implementation of the TPSS method
for H3 with the usual DIIS SCF convergence acceleration
procedure, so instead of that we used CDIIS, NoDIIS, and
SCF)QC procedures as necessary (vide infra).

In many cases, we performed quantum chemical (e.g., CCSD-
(T), that is, nearly equivalent to full CI for two- and three-
electron systems) calculations for comparison with those from
density functional theory. The quantum chemical methods
generally require larger basis sets than the density functional
methods do. We do not claim that our quantum chemical total
energies are converged with respect to the basis set limit, but
we suspect that their binding energy curves are otherwise
reasonably shaped in most cases; that is, that they are converged
around equilibrium apart from an overall vertical shift of the
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total energy. (For example, standard basis functions for second-
row atoms such as Li typically do not include the core
polarization functions needed to converge the correlation energy
of the 1s core in a CI or coupled cluster calculation). In each
Figure, we also report the exact nonrelativistic energy in the
dissociation limit.44,45

3. Radical Diatomic Cations (H2
+, He2

+, LiH +) and the
Self-Interaction Error

Molecules with an odd number of electrons can be problem-
atic for approximate density functionals.25-30 The simplest and
most dramatic example is the one-electron molecule H2

+ (Figure
1). In the ground state, the electron spends half its time on each
nuclear center. At large internuclear separationR, the lowest-
energy self-consistent solution predicted by the semilocal spin
density functional approximations is H+0.5‚‚‚H+0.5 (D∞h sym-
metry). Another broken-symmetry (C∞h) solution of higher
energy and less stability is of course H+1‚‚‚H0, which leads to
the correct dissociation limit (discussion of covalent and ionic
dissociation limits for H2+ in ref 29). The fractional electron
number on each site leads to a large, negative self-interaction
error29,31,46,47in the total energy at largeR and to a spurious
maximum in the binding energy curve, as shown in Figure 1 in
agreement with ref 29. The distance dependence of the self-
interaction error for dissociating H2+ is shown in Figure 2a of
ref 29, and an approximate formula for the distance dependence
of the self-interaction error is also given in ref 29 (cf. eq 8).
According to ref 29 the self-interaction error is dominant above
5 Å R(H-H).

For the one-electron molecule H2
+, the self-interaction-free

HF method is exact (apart from small basis set errors), and it
shows no spurious maximum in Figure 1. We note that an
admixture of 10 to 25% of exact exchange in a hybrid functional
can produce only a minor improvement in the large-R behavior
of the PBE or TPSS binding curves for H2

+, as we will show
for He2

+. Around the minimum, however, the PBE and TPSS
functionals are not so badly behaved.

The three-electron molecule He2
+ (Figure 2) is another

symmetric radical, very much like H2+. For this molecule our
CCSD(T) binding energy curve has the right qualitative shape,
whereas again the density functional methods show a spurious
maximum.

LiH+ (Figure 3) is another three-electron molecule but an
asymmetric one for which the density functionals dissociate to

Li+‚‚‚H separated fragments of integer charge for which the
self-interaction errors are small. Figure 3 shows that all of the
binding energy curves have the same correct shape as the CCSD-
(T) curve. The total energy is actually most correct in TPSS,
which converges much faster with respect to the basis set than
CCSD(T) does.

4. Closed-Shell Diatomics (H2, N2) and Spin Symmetry
Breaking

It is well known that when the many-electron Hamiltonian
commutes with mutually commuting total-spin operators the
eigenstates of the former can be chosen to be eigenstates of the
latter operators. The molecules of H2 (Figure 4) and N2 (Figure
5) are closed-shell systems in which the true ground states for
all internuclear separationsR are spin singlets with zero net
spin density. For H2, the spin-restricted CCSD(T)/6-311G(d,p)
model (equivalent to full CI for this two-electron system)
produces a qualitatively correct binding curve, whereas for N2,
the restricted CCSD(T)/6-311G(d,p) model calculation displays
a spurious maximum at largeR. This spurious maximum is a
failure of single reference quantum chemistry as discussed in

Figure 1. H2
+ ground-state (2Σg) binding energy curves (hartree)

calculated with HF, SVWN5, PBE, and TPSS methods using the
6-311G(d,p) basis set. The panel on the right shows the corresponding
energy differences (in kcal/mol) of the SVWN5, PBE, and TPSS curves
from the essentially exact Hartree-Fock curve. The H-H distance is
in Å. (1 hartree) 627.5 kcal/mol; 1 bohr) 0.5292 Å.)

Figure 2. Symmetric He2+ ground-state binding energy curve (hartree)
calculated with CCSD(T), PBE, PBEh, TPSS, and TPSSh methods
using the 6-311G(d,p) basis set. Interatomic distances are in Å. The
exact nonrelativistic dissociation limit (R f ∞)44,45 has the energy
-4.904 hartrees.

Figure 3. LiH + potential energy curves (hartree) calculated with
CCSD(T), PBE, PBEh, TPSS, and TPSSh methods using the 6-311G-
(d,p) basis set. Interatomic distances are in Å. The exact nonrelativistic
dissociation limit (Li+‚‚‚H with R f ∞)44,45 has the energy-7.780
hartree. (CCSD(T) total energy misses 67% of the correlation energy
of the Li+ 1s core because of the basis set limitation, but this does not
affect the shape of the curve.)
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ref 48 and confirmed here with the larger basis set (of triple-
instead of double-ú quality). It disappears in the spin-unrestricted
UCCSD(T)/6-311G(d,p) model, which starts from a symmetry-
broken HF wave function. For further discussion see refs 49
and 50.

For these molecules, the approximate density functionals
produce no spurious spin density near equilibrium, but spurious
spin density appears whenR increases through the Coulson-
Fischer point where the spin-unrestricted (U) solution (using
guess)mix in Gaussian 03) becomes energetically lower than
the spin-restricted one. AsR f ∞, the unrestricted solution
produces two separate atoms with opposite spin moments. This
spin symmetry breaking32-34 produces a significant improvement
in the shape of the binding energy curve for reasons that are
well understood.34 From one point of view, the symmetry
breaking just freezes out energetically important spin correlations
in the ground state of the dissociating molecule that the
functional could not account for in a spin-restricted formalism.
For example, consider the singlet ground state of Cr2 at
equilibrium. The average spin density vanishes everywhere, but
fluctuations around this average show a strong tendency to have
spin up on one atomic site and spin down on the other atomic
site, as reflected by the spin symmetry broken spin densities
predicted by semilocal spin density approximations.

In H2, the Coulson-Fischer symmetry breaking points areR
) 1.7 Å in UPBE andR ) 1.5 Å in UTPSS using the 6-311G-

(d,p) basis set for both. In N2 they areR ) 1.6 Å in UPBE and
R ) 1.7 Å in UTPSS. These results are similar to the UBLYP
result for N2 (R ) 1.5 Å) from Polo et al.51

Density functional calculations are normally performed in a
spin-unrestricted (U) mode, so the symbol U is normally
suppressed. In this and the following section, however, we stress
the spin symmetry breaking by displaying the symbol U.

5. Exotically Bonded C2 Molecule

C2 is a molecule with several low-lying spin states, including
a singlet ground state and several singlet excited states. The
spin symmetry breaks even at the equilibrium bond length in
both Hartree-Fock37 and spin density functional theories.35,36

The X 1Σg
+ ground electronic state exhibits very unusual

bonding, having twoπ bonds but noσ bond. The deficiencies
in RHF or UHF wave functions are so severe that, in general,
they cannot be adequately corrected by the addition of electron
correlation via single-reference perturbation theory or coupled
cluster theory at larger atomic distances. Multireference meth-
ods, for example, a complete active space self-consistent field
with second-order perturbation theory corrections (CASPT252),
can accurately model such problems. However, they are
computationally more expensive and not widely available in
program packages.

Recent full CI/6-31G(d) results37 show that some of the
qualitative features of the full CI binding energy curves are
accurately captured using this modest basis set. The B1∆g

+

excited state crosses below the X1Σg
+ ground electronic state

around 1.7 Å, and the two states remain very close in energy
(with differences of less than 3 kcal/mol) as they approach the
same asymptotic dissociation limit of 2 C (3P); they are nearly

Figure 4. Restricted and unrestricted CCSD(T), PBE, and TPSS/6-
311G(d,p) potential energy curves of the dissociating H2 molecule,
showing spin symmetry breaking. The exact nonrelativistic dissociation
limit (R f ∞) has the energy-1.000 hartree. The H-H distance is in
Å.

Figure 5. Restricted and unrestricted CCSD(T), PBE, and TPSS/6-
311G(d,p) potential energy curves of the dissociating N2 molecule in
its 1Σg

+ ground state, showing the spin symmetry breaking. The exact
nonrelativistic dissociation limit (R f ∞)44,45has the energy-109.178
hartrees. The N-N distance is in Å.
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degenerate at 2.8-3.0 Å. Above 1.8 Å the characters of the X
1Σg

+ state and a third B′ 1Σg
+ state are reversed because of an

avoided crossing.37 This leads to an unusual shape for the
ground-state binding energy curve, which does not look like a
typical Morse potential. The approximate single-reference
methods have considerable difficulty reproducing this shape.
Whereas the restricted methods tend to have the greatest
difficulty at large distances, unrestricted methods have more
trouble in the intermediate region. Errors for UHF-based
methods near equilibrium and the dissociation limit are quite
small for SSB UCCSD and UCCSD(T), but they become as
large as 31 and 24 kcal/mol, respectively, at intermediate
distances.37 It was observed that even iterative triples in full
CCSDT or triples and quadruples in CISDTQ are insufficient
to achieve quantitatively reliable results.37

Figure 6 shows the full CI/6-31G(d) potential energy curves
for the X1Σg

+ and B1∆g
+ states (noted as X and B, respectively)

of dissociating C237 and the corresponding spin symmetry broken
(SSB) UPBE and UTPSS curves using the larger 6-311G(d)
basis set. We found that the larger basis set does not yield
qualitatively different UPBE and UTPSS curves from the
smaller one. It was observed earlier by Abrams et al.37 that the

C2 molecule is unusual in that the SSB UHF binding energy
curve is lower than the RHF binding energy curve even at short
internuclear distances. We observed that the restricted PBE and
TPSS binding energy curves run above the corresponding SSB
UPBE and SSB UTPSS curves at short C-C distances (0.95-
1.2 Å), as the RHF and SSB UHF curves do. The Coulson-
Fischer symmetry breaking point is at 0.95 Å internuclear
distance for the PBE curves, independent of the two basis sets
used in this study.

A detailed discussion of C2 at the GGA level of description
was presented in ref 35. At the equilibrium bond length (about
1.3 Å), the PW91 GGA places the broken-symmetry singlet
state 4.8 kcal/mol above the triplet state, although experimen-
tally53 the singlet is 2.1 kcal/mol below the triplet state. The
PBE GGA and TPSS meta GGA place the broken-symmetry
singlet 2.8 and 3.0 kcal/mol above the triplet, respectively,
improving somewhat on PW91. The electronic atomization
energiesDe from the broken-symmetry singlet at equilibrium

Figure 6. Full CI/6-31G(d) binding energy (hartree) curves (from ref
37) for the X1Σg

+ and B1Σg
+ states (noted as X and B, respectively)

of dissociating C2 and the corresponding spin symmetry broken SSB
UPBE/6-311G(d) and SSB UTPSS/6-311G(d) curves. The exact
nonrelativistic dissociation limit (R f ∞)44,45 has the energy-75.690
hartrees. The C-C distance is in Å.

Figure 7. SSB UPBE/6-311G(d) and UTPSS/6-311G(d) errors (SSB
density functional energy- reference, kcal/mol) in the binding energy
curves for the dissociating ground-state C2 molecule. The reference is
the full CI/6-31G(d) energy taken from ref 37, shifted to recover the
exact nonrelativistic dissociation limit from the caption of Figure 6.
The C-C distance is in Å. The nonparallelity error around equilibrium
is much larger for C2 than for LiH+, H2, N2, or the triplet excited state
of H2.

Figure 8. Energy surface differences (hartree) relative to CCSD(T)
for the H3 C∞V structure.r1 and r2 are the two internuclear distances
(Å). The 6-311++G(d,3pd) basis set was used for these calculations.
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are 151.1 kcal/mol for PW91, 155.6 kcal/mol for PBE, 143.3
kcal/mol for TPSS, and 146.7 kcal/mol experimentally.54 Despite
the good performance of the functionals for atomization
energies, the detailed shape of the binding energy curve for C2

is predicted rather poorly, as discussed in the next paragraph.
Figure 7 shows the deviations of the SSB UPBE and SSB

UTPSS binding energy curves from a corrected full CI/6-31G-
(d) curve37 for X 1Σg

+ C2. It can be seen that the SSB UPBE
and SSB UTPSS error curves are parallel; the UPBE deviation
is typically larger. The largest errors can be observed aroundR
) 1.8 Å.

The spin symmetry breaking found here in PBE and TPSS
is qualitatively like that of PW91 from ref 35. Near equilibrium,
the up and down spin densities are concentrated not on the atoms
but on opposite sides of the bond between the atoms. At large
R, the up and down spin densities are atom-centered. However,
a direct energy scan with Gaussian 03 tends to produce PBE
and TPSS self-consistent solutions for C2 at largeR that rise
above the energy of two separated carbon atoms. To get the
lowest-energy solutions, we started the iteration from a check-
point file kindly provided by Dr. Viktor Staroverov and available
on the website web.inc.bme.hu/csonka/p96.html.

6. H3 Transition State Radical

The H3 radical is not a stable system, but it is the transition
state for the simplest hydrogen abstraction reaction H2 + H f
H + H2. This reaction is of fundamental, practical, and
theoretical significance. The practical importance arises from
the observation that the rate-limiting step in some combustion
reactions is the abstraction of a hydrogen atom from saturated
hydrocarbons. Because there are three nuclei instead of two and
the nuclei lie on a line, the H3 binding energy curve is replaced
by an energy surface in a 2D space.

We carried out an energy scan for both H-H distancesr1

and r2 of the H3 radical between 0.89 and 0.97 Å with a 0.01
Å step size. We first compared the TPSS and PBE/6-311++G-
(d,3pd) energy scan results to the corresponding CCSD(T)/6-
311++G(d,3pd) energies. The energy differences (DFT-CCSD-
(T)) are shown in Figure 8. It can be observed that in the given
domain around the saddle point the TPSS method follows the
CCSD(T) energy surface considerably better than the PBE
method does. The TPSS functional not only yields a better
surface around the saddle point but also yields an H-H distance

(0.931 Å) for the saddle point that agrees with the CCSD(T)
saddle point H-H distance (0.931 Å, cf. Table 1). The
corresponding PBE result is 0.937 Å. We noted that the current
implementation of the TPSS functional has shown SCF con-
vergence problems, so several points of the surface in Figure 8
were obtained by the use of a quadratically′ convergent SCF
procedure (SCF)QC). Earlier40 it was observed that GGA
functionals such as BPW91 and BLYP yield a consistently
longer (0.934 Å) saddle point H-H distance, as does PBE
(0.937 Å), and BP86 yields a qualitatively incorrect minimum
instead of a saddle point. The corresponding hybrid functionals
yield a qualitatively correct energy surface around the saddle
point and H-H saddle point distances around 0.930 Å.40

Interestingly, the TPSS functional is able to yield a good-quality
surface curvature without mixing exact exchange. This feature
is also shown in Figure 9, where we present the energies for
the symmetric and asymmetric stretching curves. In the sym-
metric stretching curve, the twor1 and r2 H-H distances are
equal (r1 ) r2), whereas in the asymmetric stretching curver1

+ r2 ) 1.86 Å. A vibrational frequency calculation can
determine if the critical pointr1 ) r2 is a saddle point.

We studied several functionalssSVWN5, PBE GGA, and
TPSS meta GGAsfor the symmetric and asymmetric stretching
potential energy curves of H3. We observed that the SVWN5
functional provides a false energy minimum for the H3 structure
as shown in Figure 9, and its false binding energy is shown in
Table 1. The PBE functional cannot provide the right position
for the saddle point, and it fails to yield the correct asymmetric
stretching curve shown in the Figure. In contrast, TPSS meta
GGA is able to provide the correct asymmetric stretching curve.
Similar energy curves were calculated with the CCSD(T)/6-
311G(d,p) model and are shown in Figure 9. The asymmetric
stretching curve of the CCSD(T) method has a maximum at
0.930 Å, and this is found on the TPSS asymmetric stretching
curve as well. However, we can see a shallow minimum in the
asymmetric stretching curve with PBE starting from 0.930 Å.

An analysis of the results in Table 1 shows that for the H3

classical barrier height the CCSD(T)/6-311G(d,2pd) result (9.99
kcal/mol) is almost converged to the most expensive CCSD-
(T)/6-311++G(d,3pd) result (9.93 kcal/mol). High-quality
quantum Monte Carlo (QMC) calculations yield 9.613( 0.006
kcal/mol for the barrier height,55 which is very close to the
experimental value of 9.7 kcal/mol56 and only slightly lower

TABLE 1: Hydrogen Atom Total Energies E(H) (hartree), Hydrogen Molecule Total EnergiesE(H2) (hartree), Hydrogen
Molecule Equilibrium Distances R(H-H) (Å), H 3 Energy E(H3) (hartree), H3 Barrier Distances r1 ) r2 (Å), and the Classical
Hydrogen Abstraction Energy Barriers (kcal/mol)

method E(H) E(H2) R(H-H) E(H3) r1 ) r2 barrier

CCSD(T)/6-311++G(d,3pd) -0.49982 -1.17253 0.7420 -1.65652 0.9304 9.93
CCSD(T)/6-311G(d,3pd) -0.49981 -1.17251 0.7420 -1.65643 0.9306 9.97
CCSD(T)/6-311G(d,2pd) -0.49981 -1.17231 0.7427 -1.65620 0.9300 9.99
QCISD/6-311G(d,2pd) -0.49981 -1.17231 0.7426 -1.65579 0.9300 10.25
CCSD(T)/6-311G(d,2p) -0.49981 -1.17082 0.7420 -1.65393 0.9296 10.48
CCSD(T)/6-311G(d,p) -0.49981 -1.16834 0.7435 -1.65039 0.9290 11.14
TPSS/6-311++G(d,3pd) -0.50004 -1.17985 0.7434 -1.67887 0.9318 0.64
TPSS/6-311G(d,3pd) -0.49987 -1.17983 0.7433 -1.67876 0.9319 0.59
TPSS/6-311G(d,2pd) -0.49987 -1.17982 0.7435 -1.67860 0.9324 0.68
TPSS/6-311G(d,p) -0.49987 -1.17955 0.7441 -1.67783 0.9329 1.00
PBE/6-311G(d,2pd) -0.49962 -1.16615 0.7507 -1.65985 0.9371 3.71
PBEh/6-311G(d,2pd) -0.50104 -1.16849 0.7455 -1.66047 0.9300 5.68
SWVN5/6-311++G(d,3pd) -0.47851 -1.13728 0.7660 -1.62024 0.9496 -2.80
SWVN5/6-311G(d,p) -0.47835 -1.13692 0.7670 -1.61963 0.9503 -2.74
HF/6-311++G(d,3pd) -0.49982 -1.13307 0.7343 -1.60488 0.9330 17.58
HF/6-311G(d,p) -0.49981 -1.13249 0.7354 -1.60433 0.9340 17.55
expta -0.50000 -1.17447 0.7414 9.70

a References 56 and 58.
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than the CCSD(T)/6-311G(d,2pd) result. However, smaller basis
sets lead to a considerably larger barrier height for the CCSD-
(T) model (up to 11.14 kcal/mol with the CCSD(T)/6-311G-
(d,p) model, cf. Table 1). The HF, SVWN5, and PBE methods
show little basis-set dependence for the barrier height (cf. Table
1). The HF method yields too high a barrier, whereas the
SVWN5 method yields a stably bonded H3 (no barrier). The
PBE results show an important improvement compared to the
SVWN5 results, but the calculated barrier height remains too
low. The hybrid PBE shows an improved barrier height (5.68
kcal/mol). Despite the good curvature and position of the barrier,
the TPSS method yields too low a barrier height (less than 1
kcal/mol, cf. Table 1). Mixing the TPSS with 10% exact
exchange17 yields a marginally increased barrier height (by about
0.5 kcal/mol), and even 25% exact exchange mixing adds only
1.3 kcal/mol to the barrier height. As noted earlier,40 the self-
interaction error causes the low barrier. Applying the Perdew-
Zunger self-interaction correction46 increases the barrier height
obtained from GGA functionals by about 9-10 kcal/mol.40

Finally, we discuss in detail why the TPSS energy barrier
for the reaction H2 + H f H + H2 is too low. Table 1 shows
that in TPSS the energies of H and H2 are highly accurate,
whereas the energy of the H3 transition state is too negative.

TPSS has an exchange-correlation hole57 that is localized around
its electron like the exact hole in H and H2. But in H3 there is
just oneV electron whose orbital and exchange hole are spread
uniformly over three fairly distant nuclear centers, so the exact
exchange-correlation hole is partially delocalized, resulting in
a higher energy than that of the TPSS hole. Fixing the TPSS
barrier probably requires using exact exchange as in a hyper
GGA.

7. Triplet First Excited State of H2

Normally, Kohn-Sham calculations with the ground-state
density functional predict only the ground state; the excited-
state solutions are not meaningful in principle. However, an
exception occurs when the excited-state solution satisfies the
Aufbau principle with all occupied orbital energies below all
unoccupied ones. In the latter case, an excited state is obtained
as an extremum of the ground-state functional.42,59,60An example
is the triplet first excited state of H2. For this state, it is clear
that the Aufbau principle must be satisfied in the limitR f ∞,
where the 1σgv and 1σuv orbitals become degenerate, but we find
that the Aufbau principle is satisfied even around the shallow
minimum of the binding curve and even atR ) 2.0 Å.

Figure 9. Symmetric (blue,r1 ) r2) and asymmetric (pink,r1 + r2 ) 1.86 Å) stretching energy curves (hartree) for the H3 C∞V structure.r1 and
r2 are the two internuclear distances (Å). Note that the asymmetric stretch is not the path that minimizesE for a givenr1 becauser2 is constrained
to be 1.86 Å- r1.
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Both the X 1Σg
+ and the b3Σu

+ states of the H2 molecule
dissociate to the limit of H(1s)+ H(1s). The full CI results
show that ground state X1Σg

+ arises from the configuration
|1σg

2〉, whereas the b3Σu
+ state results from the configuration

|1σg1σu〉. The b 3Σu
+ triplet state, according to Kolos and

Wolniewicz,41 is predominantly repulsive except for a shallow
vdW minimum aroundR(H-H) ≈ 4.1 Å with an estimated
binding energy of about 4 cm-1. Other calculations61,62confirm
the existence of a vdW minimum.

An analysis of the binding energy curves shown in Figure
10 shows that the SVWN5 curve is quantitatively and qualita-
tively incorrect, showing a relatively steep minimum atR(H-
H) ≈ 3.3 Å. The deviation between the full CI and the SVWN5
curves is large; atR(H-H) ) 5 Å, the full CI curve is well
below the SVWN5 curve (by-0.04291 hartree); consequently,
we have shifted the SVWN5 curve shown in Figure 10 by-0.04
hartree. The PBE curve has improved considerably compared
to the SVWN5 curve, showing a very shallow minimum at
R(H-H) ≈ 4.1 Å and running very close to the full CI curve
and slightly above it. The TPSS curve shows a further
improvement, running closer to the full CI curve and showing
an even more shallow minimum atR(H-H) ≈ 4.4 Å. Our tests
show that these results are stable against the increase of the
basis set (vide infra). (Note that the TPSS binding curve of triplet
H2 has been studied independently by V. N. Staroverov and E.
R. Davidson. Private communication.) The full CI curve is used
only as a qualitative reference because it was calculated with a
relatively small basis set; however, it seems to be sufficient to
show the improvements along the density functional ladder. A
comparison of SVWN5 and PBE curves to those calculated with
the aug-cc-pVQZ basis set shows that the aug-cc-pVQZ curves
run parallel to the 6-31G(d,p) curves, preserving the positions
of the minima. Figure 11 shows the full CI, SVWN5, PBE,
and TPSS relative binding energy curves (E(RH-H) - 2*E(H))
calculated with the aug-cc-pVQZ basis set. Although Figure
10 does not reveal the minimum of the full CI/6-311G(d,p)
energy atR(H-H) ≈ 4.1 Å, this minimum can be observed in
Figure 11. The largest basis-set dependence can be observed
for the full CI relative binding energy curve; however, the
SVWN5 curve also shows a considerable basis-set dependence.
The PBE and the TPSS functionals show considerably less basis-
set dependence; for example, the TPSS/6-311G(d,p) curve is
parallel to the TPSS/6-311G(d,p)/aug-cc-pVQZ curve in the
range of 3-4 Å H-H distance, as shown in Figure 12. At
shorter distances the basis-set effects are more important;
however, they remain small for the PBE and TPSS functionals.
This is a very desirable behavior.

We might imagine stabilizing thev v triplet state of H2 as a
ground state by applying a strong, uniform magnetic field that
couples only to the spin. Then its binding energy curve would
be expected to resemble that of two closed-shell atoms, for
example, He2. In this sense, our study of triplet H2 is a prelude
to our coming study of binding curves for the rare-gas dimers.
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Figure 10. Full CI, SVWN5, PBE, and TPSS/6-311G(d,p) energy
curves for the H2 b 3Σu

+ triplet first excited state. Energy in hartree
andR(H-H) in Å. SVWN5 energy curve was shifted by-0.04 hartree.
The exact nonrelativistic dissociation limit is-1.000 hartree.

Figure 11. Full CI, SVWN5, PBE, and TPSS/aug-cc-pVQZ relative
binding energy [E(RH-H) - 2*E(H)] curves for the H2 b 3Σu

+ triplet
first excited state.R(H-H) is in Å. Note the shallow van der Waals
minimum for each curve.

Figure 12. Full CI, SVWN5, PBE, and TPSS basis-set energy
differences (Eaug-cc-pVQZ - E6-311G(d,p)) in the relative binding energy
curves for the H2 b 3Σu

+ triplet first excited state.R(H-H) is in Å.
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